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An inviscid laminar boundary layer flow 6(j) with vertical thickness A,, and free 
stream velocity U is disturbed at time t^ = 0 by a normal velocity ir and by a spanwise 
velocity G(a, 9,2,  0) of finite amplitude aU, with spanwise (2) scale A,,. and streamwise 
(a) scale A, = &/a; the streamwise velocity 6(2,$, 2, f i  is initially undisturbed. A long 
wave (A,/A,+O) expansion of the Euler equations for fixed a and time scale is = 
U-’A,/ct results in a hyperbolic equation for Lagrangian displacements $. Within the 
interval f > f, of asymptotic validity, finite parcel displacements (O(A,)) with finit: 
(O(U)) 6 fluctuations occur, independent of a no matter how small; the basic flow U 
is therefore said to be unstable to streaky (A, % A,) spanwise perturbations. The 
temporal development of the (‘spot’) region in the (x, z) plane wherein inflected 6 
profiles appear is computed and qualitatively related to observations of ‘breakdown’ 
and transition to turbulence in the flow over a flat plate. The maximum i?(a,i, 2 , a  
increases monotonically to infinity as i-+ is. 

1. Introduction 
A key process in shear flow turbulence (Robinson 1991) is the development of 

spanwise circulations, since these produce the inflected streamwise velocity profiles 
within which relatively small-scale eddies are generated. In order to isolate this process 
many experiments have been done on the evolution of the laminar boundary layer in 
the flow over a flat plate in a wind tunnel. Although this non-inflected shear flow is 
stable to inviscid infinitesimal-amplitude perturbations, it is unstable to two- 
dimensional Tollmien-Schlichtung (TS) waves because of viscosity. Since these waves 
amplify very slowly, a vibrating ribbon in the upstream boundary layer has been 
employed to provide a finite initial amplitude, thereby reducing the downstream 
distance at which the TS waves are observed (Schubauer & Skramstad 1948). 
Subsequently (Klebanoff & Tidstrom 1958 ; Klebanoff, Tidstrom & Sargent 1961 ; 
Kovasznay, Komoda & Vasudevia 1962) a finite periodic spanwise modulation of the 
vibrating ribbon was use to produce controlled three-dimensional waves. The 
downstream phase speed and wavelength of these are consistent with linear TS theory, 
and the spanwise variation of growth rate is attributed (Klebanoff & Tidstrom 1959) 
to the variations in boundary layer thickness produced by the vibrating ribbon. The 
spanwise difference in amplitude increases downstream, giving rise to finite secondary 
circulations superimposed on the TS waves. Such spanwise motions can also develop 
naturally as a result of subharmonic or Floquet instability of finite-amplitude (two- 
dimensional) TS waves (Bayly, Orszag & Herbert 1988; Herbert 1988). Another 
possible mechanism (Bayly ef al. 1988) involves the inviscid instability of an elliptical 
two-dimensional vortex, such as might be generated behind a trip wire placed at the 
leading edge of a plate (Hama, Long & Hegarty 1957). 
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The quasi-laminar three-dimensional phase ends and ‘ transition’ begins when the 
spanwise circulation attains sufficient amplitude to produce an inflection in the 
streamwise velocity profile ; this is correlated with low-velocity ‘ spikes ’ recorded by 
stationary velocity probes. Kovasznay et al. (1962) refer to the spike as an indicator of 
the initial ‘breakdown’ of the orderly flow, and refer to the region of the horizontal 
plane in which inflections occur as a ‘spot’. The leading edge of this travels 
downstream with a speed slightly less than the free stream speed, and since the 
upstream end of the spot travels much slower, successive spots overtake each other in 
a region where the flow becomes ‘turbulent ’. Although the aforementioned evolution 
of the linear TS wave is interesting for its own sake, it may be possible to obtain a 
simpler starting point for understanding the transition stage, as suggested below. 

Consider an inviscid laminar boundary layer flow in the ?-direction, with speed @) 
relative to the free stream speed U ;  so that o(0) = U is the speed at the wall (9 = 0), 
and U(p) = 0 at A, < p < co, where A, = &?,d, 0) denotes the undisturbed height of 
an interface above which the flow is strictly irrotational. At time f = 0 the flow beneath 
this interface is perturbated by a spanwise circulation whose (2,p) velocity components 
are G(2,9,2,0), 8(?,9, 2,O) respectively, and whose finite non-dimensional amplitude is 
defined by 

Let A, be the spanwise scale length of the disturbance, and let 

A5 = A,/a (1.2) 

be the streamwise scale. A nonlinear long-wave solution of the three-dimensional Euler 
equations obtained ($2) by taking the limit 

A,/A, +. 0 (1 -3) 

for a fixed a leads to a hyperbolic differential equation (3.8) for the Lagrangian normal 
displacements. This equation depends on the basic shear flow (0) (even though 
ali(i,p, i, O ) / M  = 0), and is valid for f < is = A,/aU, at which time the theory fails 
because the maximum normal velocity becomes infinite. But well before this time 
finite displacement L- A, = O(A,) occur which are independent of the initial amplitude 
(a) however small (but finite); likewise, finite streamwise fluctuations ( l i )  and finite 
inflections also develop. It is strongly suggested that the continuation of the calculation 
beyond F,, via the Navier-Stokes equations, will never lead to a return to the basic 
state, which is therefore said to be unstable. 

The basic long-wave equation (3.2) has appeared previously (Stern & Paldor 1983, 
equation (57)) in another context, and also as the ‘homobaric’ approximation; see 
Russell & Landahl (1984) and references cited therein. The latter authors attempt to 
relate this approximation to transition in fully turbulent boundary layers by developing 
an (non-uniform) expansion of the Euler equations for small A,/A, and small f < i,, 
where i, is the estimated time at which the induced free stream pressure gradients 
generate non-negligible horizontal velocities. These pressures are computed from 
power series expansions in i, and applied as a correction to the homobaric 
approximation. The resulting numerical calculations for h,/A, = f exhibit inflections in 
the streamwise velocity profiles, but these occur at a time (f > fc) beyond the limits of 
validity of the expansions. 
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The following development, on the other hand, is directed towards an understanding 
of the more restricted problem of the finite-amplitude instability of a laminar flow, and 
to the kind of transition mentioned in the previous experiments. The amplitude, length 
and time scalings in our long-wave (AJA, + 0) expansion are therefore chosen such as 
to make the pressure gradients negligible at all times within an interval (i < Cq) when 
streamwise inflections do appear. For small finite amplitudes (a) this manifestation of 
instability occurs for a spanwise scale (A,) much larger than Russell & Landahl’s value 
(A, = 54,)’ but still much smaller than the streamwise scale A,. This scale is in 
qualitative agreement with the observed ‘streakiness’ of the inflected spot, whose 
temporal evolution in the (2, i) plane (Figures 1-3) is also discussed. 

Although the same kind of instability does not occur in the two-dimensional version 
(ti, E 0) of this problem, there is another noteworthy effect, viz. the temporal tendency 
for perturbed vorticity isopleths to concentrate in ‘fronts’; i.e. large vorticity gradients 
form as a result of the homobaric tendency of fast moving parcels in the boundary 
layer to overtake slower ones. The experimental reality of this tendency was 
demonstrated (Stern & Vorapayev 1984) by discharging a dyed laminar (moderate 
Reynolds number) and axial symmetric jet from a round nozzle into a large tank of 
water. After a steady state (near the nozzle) was reached, the discharge was increased 
to a new steady value; during which time the fast fluid entering behind the slower jet 
formed a relatively broad transition region consisting of a weak downstream 
convergence. As time increased the fast fluid with relatively high (potential) vorticity 
overtook the slower fluid with lesser (potential) vorticity, thereby decreasing the width 
of the intervening transition zone, and forming a ‘front’ with large downstream 
vorticity gradient. This effect was accounted for by a cylindrically symmetric long-wave 
theory, using the same (homobaric) principle as is applied here in the context of a three- 
dimensional finite-amplitude instability. 

The following theory extends the work of Ellingsen & Palm (1975), who showed that 
o(p) inflections can be forced by a pure spanwise (a/aZ = 0) and stationary finite- 
amplitude solution of the Euler equations; but unlike our case the (6, $) components 
are decoupled from the mean flow, and neither the boundary layer thickness (A,) nor 
the amplitude a - lti,l/ U have any dynamical significance. The Ellingsen-Palm-Stuart 
mechanism is also central to viscous initial value calculations of the (linear) 
amplification of sub-critical and non-normal Orr-Sommerfeld modes (Butler & 
Farrell 1992; Trefethen et al. 1993). In the case of a boundary layer flow these studies 
show that optimal growth (before ultimate viscous decay) occurs for pure spanwise 
(a/iX = 0) initial disturbances, whose normal velocity 6 produces the large changes in 
streamwise velocity which account for the increase in total disturbance energy. Some 
downstream variation must be present, however, for even the inclusion of finite 
amplitude will not alter the decay (Gustavsson 1991). 

The possibility of ‘bypassing’ the two-dimensional Orr-Sommerfeld and secondary 
instability stages is raised by Henningson, Lundbladh & Johansson (1993), who first 
compute the linear viscous evolution of a specific (but nondescript) compact three- 
dimensional disturbance ; this produces a temporally increasing long-wave component, 
in agreement with the aforementioned references. Then the initial amplitude is 
increased up to the point where inflected velocity profiles occur. A streamwise vortex 
then rolls up in this region, and small-scale turbulence ensues even though the 
Reynolds number is modest. 

The result of the following inviscid theory, which includes nonlinearity and 
streamwise variation, suggests that the entire linear phase may be ‘bypassed’, in order 
to obtain a more direct route to the transitional phase. 
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2. Long-wave equations for the boundary layer 
When the continuity and Eulerian momentum equations 

-+-+- aa ao a 6  = 0, (d? - da - do df - d$ df) = -6-1 ($3 - - g, - $) 
aa a9 a2 

are made non-dimensional by the transformations 

(2.1) 

(2.2) 

(2.3) 
(2.4) 
(2.5) 

I f = A, z,  

li = Uu(x,y , z ,  t ) ,  14 = aUw, D = aUm, 
j = A, y, i? = (&/a) x ,  i = (A,/a) U-lt, 

p / p  = €a2 ~ p ( x , y ,  z ,  t), i = A,L(X, z ,  r), 8 = A,/A,. 

we get duldt = -€az applax, 

dwldt = - 8 appldz, 

E dvldt = - ap/ay,  

aupx + avpy  + aw/az = 0. 

Consider first an expansion of these equations in the boundary layer 0, < L) for 
c+O with a fixed. Then the leading-order terms in (2.2), (2.3), (2.5), are 

duldt = 0 = dw/dt, 0 < y < L(x, Z, t),  (2.6) 
(2.7) 

(2.8) 

aupx + atqay + awpz = 0, 

u(x, 0, z ,  t )  = 0 

and together with the boundary condition 

constitute a complete set of initial value equations (cf. $3). But the value of the leading 
pressure term is not implicit in (2.4) because the constant of integration (in y )  depends 
on the free stream ( y  > L) dynamics, and it is therefore important to verify the order 
of magnitude of p assumed in (2.1). 

Note that the normal velocity 

U ( X ,  L, Z, t )  = dL/dt (2.9) 
computed from the (above) boundary layer dynamics will force horizontal velocities 
(u, w) in the irrotational free stream which are of the same order as (2.9), and all 
these fields (including p )  vary relatively slowly in y, viz. on a E - ~  scale. Thus for the 
free stream region we set 

in (2.2H2.5), and for the leading terms in the expansion of the fields we use 

Y = V I E  (2.10) 

(2.11) u = € U 1 ( X ,  t-y, z ,  t), w = EW1(X, E Y , Z ,  

fJ = v,(x, ey, z,t), P = P l ( X ,  ey, z,O. 
When E + O ,  (2.2H2.5) then reduce to 

(2.12) 

since the nonlinear advective terms are higher in order in E .  At 7 = EL --f 0 the lower 
boundary condition for the solution of these linear equations becomes 

vl(x,  0, z ,  t) = dL/at at 9 = 0. (2.13) 
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This completes the first-order (in E )  asymptotics, which establishes that the effect of the 
horizontal pressure gradient in the boundary layer is indeed negligible for sufficiently 
small h,/A,, and at all t (and a) for which the solution of (2.6)-(2.8) is non-singular 
(finite). In addition the asymptotic value of the horizontal velocity on the interface is 

u(x, L(x,  z ,  t ) ,  z ,  t )  = 0 = w(x, L(x,  z ,  t ) ,  z ,  t ) .  (2.14) 

1 ay/ax t[@ayx) 
t q y 3  ayylay t [ q ( p p  

o a y p z  i + t g ' ( z ' ) $ ~ ~  

3. Lagrangian dynamics 
If X, 7, z are the coordinates of a Lagrangian parcel at t = 0, and x(x, y, T, t ) ,  y(x, 7, 

Z, t),  z(x, 7, T, t )  are its coordinates at t then the momentum equations (2.6) integrate to 

(3.1) 
where ii, w are the given initial values of the horizontal velocity. It only remains to find 
the vertical position y of the parcel, and this is supplied by the Lagrangian continuity 
equation a(x, y ,  z)/a(js, 7, z') = 1 .  When (3.1) is used in the Jacobian determinant we get 
(Stern & Paldor 1983; Russell & Landahl 1984). 

x = x+ ti@, 7,q, z = z+ t q x ,  y , a ,  

= 1 .  (3.8) 

At any given t this inhomogeneous first-order equation can be integrated with respect 
to 7, starting with the boundary condition 

( 3  * 3 )  

to obtain the value of y for any x,y, Z. We emphasize the fact that these equations are 
independent of the amplitude (a) of the initial disturbance. 

The solution will be discussed for the special, but most interesting, case in which the 
initial value of the streamwise velocity is the same as the undisturbed flow q y ) ,  i.e. 

y(x ,  0, z, t )  = 0, 

u(x, y ,  z, 0)  = qy) ,  @(O) = 1, u( 1) = 0, (3.4) 

and the initial value of ( w , v )  is determined by 

w(x, y, z,  0) = v, 7 9 3  = tl(q $(v3 Wx), ( 3 . 5 )  
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It will be helpful if the names of the independent variables in this differential 
equation are now changed to (xp,p, z,), so that (z, ,v,a may be reserved for the initial 
values of the independent variables whose final values (x,y,z) are to be computed. 
With this understanding, (3.8) becomes 

- and we are required to compute y when p = y,xp = x,zP = z. 

eauation 
The partial differential equation (3.9) is equivalent to the ordinary differential 

where differentiation is along the characteristic curve C obtained from 

(3.10) 

(3.11) 

(3.12) 

The integral of (3.1 1) yields a p-independent value of x,(p) + tti(p), whose particular 
value at p = ,v equals x (3.1). Direct differentiation shows the solution of (3.12) is a p- 
independent value of z,(p) + t[(z,) +(p) a(~ , ) ,  whose particular value at p = y equals 
z,  (3.1). Thus the solutions 

X , ( P )  + MP) = x, (3.13) 

Z,(P) + tC@,> $(P) W,) = z ,  (3.14) 

determine C for any prescribed values of (x,  z, t )  and p .  The geometrical interpretation 
of (3.13)-(3.14) is that all the Lagrangian points (at t )  lying on a vertical line erected 
at x,z originated ( t  = 0) somewhere (i.e. at some p) on the characteristic curve 
obtainable by solving (3.13), (3.14) for x,, z,, Then the point on C with ordinate 
p = p ends up at an ordinate 

(3.15) 

obtained by integrating (3.10) along the characteristic up to the point p = y .  The 
vertical profile of streamwise velocity at (x,y,z, t )  is then readily obtained from (2.6) 
and (3.4), which yield the conservation relation u(x, y ,  z ,  t )  = q y ) .  

The solution becomes more explicit if w vanishes everywhere on the z = 0 plane, i.e. 

C(0) = 0, S(0) = - 1, (3.16) 

so that any Lagrangian point for which z = 0 will have z = 0, and conversely. When 
(3.7) and (3.13) are used in (3.15), the result may be written as 

(3.17) 

where 
and 

(3.18) 
(3.19) 
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is the basic flow whch is independent of y,z.  For any given ii(y), and for any given 
components 52(X), @) of the initial spanwise velocity field (w), we can integrate (3.17) 
at any (x, t) for a specified p to obtain the corresponding y. Then (3.19) gives the 
streamwise velocity at (x ,y ,  t )  and (3.18) gives its initial abscissa (X). 

The long-wave approximation to the z-component of vorticity 

(3.20) 

can also be readily computed (Russell & Landahl 1984) by first differentiating (2.6) to 

au w = -- ay (x, Y 3 0, t )  

a )  

a )  

a a  
- -+u-+v-+w- w = 0, 
az at ax ay az 

a a  
- -+u-+v-+w- u = o ,  
ay a ( a  at ax ay az 

a ( a  
(3.21 a)  

(3.21 b)  

When the derivatives are evaluated on z = 0 (where w = 0), the first of these equations 
becomes 

or 

With the help of the continuity equation (2.7), equation (3.21 6 )  becomes 

and when (3.22) is used the result integrates to 

(3.22) 

(3.23) 

= 1 - t#@) Q(x). (3.24) 

If we follow the parcel at x = 0,p = y ,  with Q(0) = 1, #(y,) = 1 we see that the 
vorticity vanishes at t = t ,  = 1, and the long-wave theory fails at this point because the 
displacement y in (3.17) becomes infinite. Note that the normal velocity u = (ay/at)z,  
and the pressure gradient also become infinite. 

The important generic point, however, as illustrated in the following section, is that 
for all t < 1 the Lagrangian parcel displacements ( y - 7 )  and the horizontal velocity 
fluctuations u(x, y, z, t) - q y )  become O( l), and independent of the value of the 
perturbation amplitude a. 

4. Discussion and conclusions 
Calculations for the quantities indicated above were made for 

q.71 = (1 -J92, (7 < 11, 
Q(X) = 1/(1+(2X)2), 
C(.q = -T/U +(.q", 
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FIGURE 1. The vertical thickness L(x, 0.9) of the boundary layer at t = 0.9, and four downstream 
velocity profiles ( u b ) )  on z = 0 for the initial conditions (4.1H4.4). The x-value which applies to 
each u(y) profile is given by its intersection with L(x, 0.9), and the velocity scale is given by u ( t )  = 0, 
u(0) = 1. Note that the displacement L -  I and the inflections are independent of the initial (t = 0) 
amplitude (a), and the homobaric theory is valid for t < 1. 
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-1.0 -0.5 0 0.5 1 .O 1.5 2.0 
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FIGURE 2. The area of the (x, z) plane within which an inflected u profile occurs. The initial conditions 
are the same as for figure 1, and the curves are for t = 0.9 (outermost), 0.7, 0.5 and 0.3. Note the 
difference in propagation rates of the leading and trailing edges of the ‘spot’. 

and 

The spanwise velocity ( ~ )  corresponding to (4.4) is horizontally convergent in 
0 c y c f, and divergent for f < < i. Equation (3.17) applies on the z = 0 plane, and 
by setting p = 1 the height y = L(x, 0.9) of the vorticity interface (figure 1) on this plane 
was computed. The remaining curves (u(y)) in figure 1 are velocity profiles computed 
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FIGURE 3. Same as figure 2 except that the initial disturbance (4.5) occupies the entire depth of 
the boundary layer. The curves ar for t = 0.9 and 0.7. 

at the values of x where these curves intersect L(x,O.9), with u = 0 at these 
intersections, and u = 1 at y = 0. In a reference frame fixed to the wall, the free stream 
( y  > L) would flow from right to left with unit speed, and at any fixed height the 
streamwise speed would be less than its undisturbed value. The region of minimum 
shear in u is explained (3.23) by the spanwise convergence and rising fluid in the lower 
boundary layer. The maximum vorticity (at x = 0.7) in the overlying inflection exceeds 
the maximum undisturbed value at p = 0, because of the spanwise divergence of the 
rising fluid which originates at p > a. 

The more general integral (3.15) was use to compute the velocity profiles at x , z  
points for which z =k 0. The area of the (x ,  z) plane within which an inflected u-profile 
may be found is indicated by the closed curves in figure 2 (for (4.4)) and figure 3 (for 
4.5)). Figure 2 shows that the area of the ‘spot’ increases from zero at some time 
(0 < t < 0.3, not shown). Small-scale eddies may be expected to grow within the spot 
boundary, but the precise location of these curves in figures 2 and 3 is not significant; 
we may therefore say that the nose of the spot at negative x is almost stationary with 
respect to the free stream, while the nose of the spot at positive x is almost stationary 
with respect to the moving wall. Relative to the wall, the downstream ( x  < 0) end of 
the spot is moving faster than the upstream end, in qualitative agreement with the 
observation (cf. § 1) that one spot overtakes another at the downstream position where 
transition ends and turbulence begins. The theory also provides a qualitative expla- 
nation of the low-velocity ‘spike’ observed prior to this time. All of these finite effects 
are independent of the initial amplitude a, and only require larger values of dimension- 
al time as a decreases. In the relevant regime of small a the theory ‘predicts’ a streaky 
(A,  < A,) mode structure. This instability to small finite-amplitude disturbances is a 
generic property of our theory, which is associated with the fact that (3.17) y - y  O(1) 
within the interval ( t  < 1) of validity of the long-wave theory. The total kinetic energy 
of the disturbance, as measured by the departure of 6 ( i ,  f , i ,  fi from its horizontal 
average (as well as by 9,6), is much greater than its initial value, and lZl+ 00 as t --t 1. 

The foregoing calculations could have been done for an initial disturbance which 
was periodic in x and z. It is interesting to speculate as to what would happen if our 
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inviscid solution at (say) t = 0.5 was used to initialize a numerical solution of the 
Navier-Stokes equations, in order to continue the calculation beyond the ‘ shock’ 
points in space and time ( r  = I), and to allow the small-scale eddies to grow in the 
inflected spot. Almost certainly the regime would not return to its undisturbed ( t  = 0) 
state, but ‘new’ spanwise motions would probably develop due to the dynamically 
significant horizontal pressure gradients which form when t + 1. Some insight into 
what happens as t + 1 may be obtained by comparing the long-wave theory for two- 
dimensional flow (Stern & Vorapayev 1984) with contour dynamical continuations 
for piecewise-uniform-vorticity shear flows (Stern 1989). 
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